I have a partial result, as follows.
Since $\sin x \le x \, \,\forall \, x \ge 0$, this means that $$-\frac{1}{\sin\frac{\pi}{x}}<-\frac{x}{\pi}$$ .
It was shown in here that $ \sin x \ge \frac{x}{x+1}, \space \space\forall x \in \left[0, \frac{\pi}{2}\right]$. This implies that $$\frac{2}{\sin\frac{\pi}{2x}} \le 2+\frac{4x}{\pi}$$.
Hence, $$\frac{2}{\sin\frac{\pi}{2x}}-\frac{1}{\sin\frac{\pi}{x}}\le 2+\frac{4x}{\pi}-\frac{x}{\pi}=2+\frac{3x}{\pi}$$
Now, $2+\frac{3x}{\pi} < x$ if $x>\frac{2\pi}{\pi -3}$, which is about 44.375.
So, I only proved that $X+\csc{\left(\frac{\pi}{X}\right)}>2\csc{\left(\frac{\pi}{2X}\right)}$ if $X>44.4$.