Let $m,n\in\mathbb{N}$.
I need to express the derivative $\displaystyle\frac{d^n}{dx^n}\left(f(x)^m\right)$ in terms of sums/products of the derivatives of the function $f$ itself.
Here are results for several small fixed values of $n$: $$\frac{d}{dx}\left(f(x)^m\right)=m \cdot f(x)^{m-1} \cdot f^{'}(x)$$
$$\frac{d^2}{dx^2}\left(f(x)^m\right)=m \cdot (m-1) \cdot f(x)^{m-2} \cdot f^{'}(x)^2+m \cdot f(x)^{m-1} \cdot f^{''}(x)$$
$$\frac{d^3}{dx^3}\left(f(x)^m\right)=m \cdot (m-1) \cdot (m-2) \cdot f(x)^{m-3} \cdot f^{'}(x)^3+3 \cdot m \cdot (m-1) \cdot f(x)^{m-2} \cdot f^{'}(x) \cdot f^{''}(x) + m \cdot f(x)^{m-1} \cdot f^{'''}(x)$$
I tried to find a common pattern for these expressions, but failed.
Question: Is it possible to find a general formula for the derivative of any given order $n$?