Verify the identity:
$$\frac{(\cos(x+h) - \cos x)}{h} = \cos x \left(\frac{\cos h - 1}{h}\right)- \sin x \left(\frac{\sin h }{h}\right)$$
=(Cosxcosh - sin x sin h -cos x)/h.
I can't think of where to go from here.
Thanks
Verify the identity:
$$\frac{(\cos(x+h) - \cos x)}{h} = \cos x \left(\frac{\cos h - 1}{h}\right)- \sin x \left(\frac{\sin h }{h}\right)$$
=(Cosxcosh - sin x sin h -cos x)/h.
I can't think of where to go from here.
Thanks
If I understood correctly what you have written: $$\frac{(\cos(x+h) - \cos(x))}{h}\stackrel{?}{=} \cos x \left(\frac{\cos h - 1}{h}\right)- \sin x \left(\frac{\sin h }{h}\right)$$ Or $$\frac{\cos(x+h) - \cos(x)}{h}\stackrel{?}{=}\frac{\cos(x)(\cos(h)-1)-\sin(x)\sin(h)}{h} $$ Or $$ \begin{eqnarray} \cos(x+h) - \cos(x)&=&\cos(x)(\cos(h)-1)-\sin(x)\sin(h)=\\ &=&\cos(x)\cos(h)-\cos(x)-\sin(x)\sin(h) \end{eqnarray} $$ $$\cos(x)\cos(h)-\sin(x)\sin(h)=\cos(x+h)$$ and so you have $$\cos(x+h) - \cos(x)=\cos(x+h) - \cos(x)$$
Hint: You're nearly there. Which terms of the numerator have a common factor?