After introducing the standard scalar multiplication and addition in $\mathbb{R}^n$ the following example may be entertaining.
Example 1 Suppose $n \geqslant 1$, we define in $\mathbb{R}^{n+1}$ the addition by
$$
\\
(x_0,x_1,\dots,x_n) + (y_0,y_1,\dots,y_n)=
\begin{cases}
\left(x_0+y_0,\frac{x_0x_1+y_0y_1}{x_0+y_0}, \dots,\frac{x_0x_n+y_0y_n}{x_0+y_0}\right) &\text{if } x_0+y_0\neq0,
\\
\left(0,x_0x_1+y_0y_1, \dots,x_0x_n+y_0y_n \right) &\text{if } x_0+y_0=0, x_0\neq0,
\\
\left(y_0,x_1+\frac{y_1}{y_0}, \dots,x_n+\frac{y_n}{y_0} \right) &\text{if } x_0=0,y_0\neq0,
\\
\left(x_0,\frac{x_1}{x_0}+y_1, \dots,\frac{x_n}{x_0}+y_n \right) &\text{if } x_0\neq0,y_0=0,
\\
\left(0,x_1+y_1, \dots,x_n+y_n \right) &\text{if } x_0=0,y_0=0.
\end{cases}$$
and the scalar multiplication by
$$a\cdot(x_0,x_1,\dots,x_n) =
\begin{cases}
(0,0,\dots,0) &\text{if } a=0,
\\
(ax_0,x_1,\dots,x_n) &\text{if } a\neq 0,x_0\neq0,
\\
(0,ax_1,\dots,ax_n) &\text{if } x_0=0.
\end{cases}
$$
Example 2
A slightly more general example based off the same idea. Suppose $V$ is a vector space over a field $\mathbb{K}$ and define the addition by
\begin{align*}
+ : (\mathbb{K}\times V)\times (\mathbb{K}\times V) &\to (\mathbb{K}\times V) \\ (x,\pmb{u}) + (y,\pmb{v})&=
\begin{cases}
\left(x+y,\frac{x}{x+y}\pmb{u} + \frac{y}{x+y}\pmb{v}\right) &\text{if } x+y\neq0,
\\
\left(0,x\pmb{u}+y\pmb{v} \right) &\text{if } x+y=0, x\neq0,
\\
\left(y,\pmb{u}+\frac{1}{y}\pmb{v} \right) &\text{if } x=0,y\neq0,
\\
\left(x,\frac{1}{x}\pmb{u}+\pmb{v} \right) &\text{if } x\neq 0,y=0,
\\
\left(0,\pmb{u} +\pmb{v} \right) &\text{if } x=0,y=0,
\end{cases}
\end{align*}
and the scalar multiplication by
\begin{align*}
\cdot : \mathbb{K}\times (\mathbb{K}\times V) &\to (\mathbb{K}\times V) \\ a\cdot(x,\pmb{v}) &=
\begin{cases}
(0,\pmb{0}) &\text{if } a=0,
\\
(ax,\pmb{v}) &\text{if } a\neq 0,x\neq0,
\\
(0,a\pmb{v}) &\text{if } x=0.
\end{cases}
\end{align*}
Then the first example is just a special case ($V=\mathbb{R}^n$). Checking that these are indeed vector spaces is a good home work.
Both examples are drawn from the construction of an universal space of an affine space applied to affine space $\mathbb{R}^n$ or a vector space $V$ with its standard affine structure. However, none of this needs to be revealed when introducing the example for the first time. The details of a general case for an affine space can be found e.g. in M. Berger Geometry I page 70.