Assume that G is a group. Define $G'=\langle\{ghg^{-1}h^{-1}\mid g,h\in G \}\rangle$. Then $G'$ is a normal subgroup of $G$. Prove If $H$ is a subgroup of $G$ and $G'\subseteq H$, then $H$ is normal subgroup of $G$.
Proof: Let $a \in G$ abd $h \in H$.
Then $aha^{-1}h^{-1} \in G$. Then $aha^{-1}h^{-1} \in H$. Then $aha^{-1}h^{-1}H =H$
Then $aha^{-1}H =H$, since $h^{-1} \in H$, since H is a subgroup.
Then $aha^{-1} \in H$. Therefore, H is normal subgroup of G.