Let $U\subset\mathbb{R}^n$ be an open set, $\Phi$ the fundamental solution of heat equation, $T>0$, $r>0$, $x\in\mathbb{R}^n$ and $t\in\mathbb{R}$. Defines $U_T=U\times(0,T]$ and $$E(x,t;r)=\{(y,s)\in\mathbb{R}^{n+1};\:s\leq t,\;\Phi(x-y,t-s)\geq r^{-n}\}.$$
Evans PDE book presents the following
Theorem (mean-value property for the heat equation): Let $u\in C^2_1(U_T)$ solve the heat equation. Then $$u(x,t)=\frac{1}{4r^n}\iint_{E(x,t;r)}u(y,s)\frac{|x-y|^2}{(t-s)^2}\,dy\,ds.$$
In the proof is used the following equality:
$$\iint_{E(0,0;1)}\frac{1}{s^2}\sum_{i=1}^n {y_i}^2\,dy\,ds=4$$
Could someone help me with details of this calculation?
Thanks.