Prove that
$$ \frac{(p - 1)!}{(p - k)! \cdot k!} $$
is an integer if $0 < k < p$ and $p$ is prime.
Prove that
$$ \frac{(p - 1)!}{(p - k)! \cdot k!} $$
is an integer if $0 < k < p$ and $p$ is prime.
HINT: Use your previous question and the fact that $$\frac{(p - 1)!}{(p - k)! \cdot k!}=\frac1p\binom{p}k\;.$$