6

I have to decice if the following function is Lebesgue-integrable on $[0,1]$:

$$g(x)=\frac{1}x\cos\left(\frac{1}x\right) $$ where $x\in[0,1]$.

Chris Culter
  • 26,806
Blanca
  • 741

1 Answers1

2

$$ \int_{\large\frac1{n\pi}}^1\left|\frac1x\cos\left(\frac1x\right)\right|\,\mathrm{d}x =\int_1^{n\pi}\left|\frac1x\cos(x)\right|\,\mathrm{d}x $$ However, $\left[\frac\pi2,n\pi-\frac\pi2\right]\subset[1,n\pi]$ and $$ \begin{align} \int_{\pi/2}^{n\pi-\pi/2}\left|\frac1x\cos(x)\right|\,\mathrm{d}x &=\sum_{k=1}^{n-1}\int_{k\pi-\pi/2}^{k\pi+\pi/2}\left|\frac1x\cos(x)\right|\,\mathrm{d}x\\ &\ge\sum_{k=1}^{n-1}\frac2{(2k+1)\pi}\left|\int_{k\pi-\pi/2}^{k\pi+\pi/2}\cos(x)\,\mathrm{d}x\right|\\ &=\sum_{k=1}^{n-1}\frac4{(2k+1)\pi} \end{align} $$ and since the Harmonic Series diverges, $\frac1x\cos\left(\frac1x\right)$ is not Lebesgue integrable on $[0,1]$.

robjohn
  • 345,667
  • I don't understand why do you chose that values for the interval of the integral. Could you explain it please? – Blanca Oct 21 '13 at 20:36
  • @Blanca: I have added some to my answer that may help to explain. If not, let me know. – robjohn Oct 21 '13 at 21:24