We put $x = a + h$ so that when $x \to a+$ then $h \to 0+$. We then have
\begin{align}
L &= \lim_{x \to a+}\frac{\cos x \ln(x - a)}{\ln(e^{x} - e^{a})}\notag\\
&= \lim_{h \to 0+}\cos(a + h)\frac{\ln h}{\ln(e^{a + h} - e^{a})}\notag\\
&= \lim_{h \to 0+}\cos a \frac{\ln h}{\ln\{e^{a}(e^{h} - 1)\}}\tag{1}\\
&= \cos a\lim_{h \to 0+}\frac{\ln h}{a + \ln(e^{h} - 1)}\notag\\
&= \cos a\lim_{h \to 0+}\dfrac{\ln h}{a + \ln\left(h\cdot\dfrac{e^{h} - 1}{h}\right)}\notag\\
&= \cos a\lim_{h \to 0+}\dfrac{\ln h}{a + \ln h + \ln\left(\dfrac{e^{h} - 1}{h}\right)}\notag\\
&= \cos a\lim_{h \to 0+}\dfrac{1}{\dfrac{a}{\ln h} + 1 + \dfrac{1}{\ln h}\cdot\ln\left(\dfrac{e^{h} - 1}{h}\right)}\notag\\
&= \cos a\cdot\frac{1}{0 + 1 + 0\cdot 0}\tag{2}\\
&= \cos a\notag
\end{align}
At the end we use the fact that as $h \to 0+$, $\ln h \to -\infty$ so that $a/\ln h \to 0$ and $(e^{h} - 1)/h \to 1$ so that $\ln((e^{h} - 1)/h) \to 0$ and $1/\ln h \to 0$.
As I have pointed out elsewhere in this site, we don't need L'Hospital or series expansions for most of the limit problems.
Note: In step marked $(1)$ we assume that $\cos a\neq 0$ in order for the product rule of limits to work. And finally in step $(2)$ we see that the limit of the other factor apart from $\cos a$ is $1$ so that the condition $\cos a\neq 0$ is no longer necessary and result holds for all values of $a$. Thanks to user @LearningMath for pointing this out via comments.