I asked a question here and got answer committing :
$$(1+yz^n)(1+y)^{n-1} - (1+yz)^n=\sum_{k=1}^{n-1}n\binom{n-1}{k-1}y^k \bigg(\frac{1-z^k}{k}- \frac{1-z^n}{n}\bigg) \tag{1}$$and$$\frac{1-z^{n}}{n}-\frac{1-z^{n+1}}{n+1}= \frac{(z-1)^2}{n(n+1)}\bigg( \sum_{k=0}^{n-1} (k+1)z^k \bigg) \tag{2}$$
My try:
- Using binomial theorem, $$(1+yz^n)(1+y)^{n-1} - (1+yz)^n=(1+yz^n)\sum_{k=0}^{n-1}\binom{n-1}{k}y^{n-1-k}-\sum_{k=0}^n\binom{n}{k}(yz)^{n-k}$$
- Using this,$$\frac{1-z^{n}}{n}-\frac{1-z^{n+1}}{n+1}=(1-z)\cdot\bigg(\frac{1+z+\dots+z^{n-1}}{n}-\frac{1+z+\dots+z^{n-1}+z^n}{n+1}\bigg)$$ I can't go ahead in both the cases. Please help me.