let $x,y,z$ be positive numbers, and such $x+y+z=1$
show that $$\dfrac{x^y}{y^x}+\dfrac{y^z}{z^y}+\dfrac{z^x}{x^z}\ge 3$$
My try:
let $$a=\ln{\dfrac{x^y}{y^x}},b=\ln{\dfrac{y^z}{z^y}},c=\ln{\dfrac{z^x}{x^z}}$$ so $$a=y\ln{x}-x\ln{y},b=z\ln{y}-y\ln{z},c=x\ln{z}-z\ln{x}$$ and we note $$az+bx+yc=(y\ln{x}-x\ln{y})z+(z\ln{y}-y\ln{z})x+(x\ln{z}-z\ln{x})y=0$$ so $$\dfrac{x^y}{y^x}+\dfrac{y^z}{z^y}+\dfrac{z^x}{x^z}=e^a+e^b+e^c$$ so $$\Longleftrightarrow e^a+e^b+e^c\ge 3$$ But then I can't prove it.
If this problem is to prove $$ze^a+xe^b+ye^c\ge 3,$$ I can prove it,because $$ze^a+xe^b+ye^c\ge=\dfrac{z}{x+y+z}e^a+\dfrac{x}{x+y+z}e^b+\dfrac{y}{x+y+z}e^c$$ so use Jensen's inequality,we have $$ze^a+xe^b+ye^c\ge e^{\dfrac{az+bx+yc}{x+y+z}}=3$$
This problem comes from How prove this $\dfrac{x^y}{y^x}\ge (1+\ln{3})x-(1+\ln{3})y+1$?
Thank you very much!