$$\left(\frac{1\cdot2}{p}\right) + \left(\frac{2\cdot3}{p}\right) + \left(\frac{3\cdot4}{p}\right) +\ldots+ \left(\frac{(p-2)(p-1)}{p}\right) = -1$$
Note: $\left(\frac{a}{b}\right)$ represents the Legendre Symbol.
I have tried using this method. For each $k$ between $1$ and $p-2$ denote by $k'$ its multiplicative inverse $\mod p$. To estimate the sum of all Legendre symbols $\left(\frac{k(k+1)}p\right)$ show first that $\left(\frac{k(k+1)}p\right) = \left(\frac{1+k'}p\right),$ then estimate the sum of $\left(\frac{1+k'}p\right).$