I can't find the limit of the the following:
$$\lim_{p\to1} \frac{ p^{1/3} - 1 }{p - 1}$$
Any ideas?
I can't find the limit of the the following:
$$\lim_{p\to1} \frac{ p^{1/3} - 1 }{p - 1}$$
Any ideas?
Putting $p^{\frac13}=q\implies p=q^3$ as $p\to1, q\to1$
$$\lim_{p\to1}\frac{p^{\frac13}-1}{p-1}$$
$$=\lim_{q\to1}\frac{q-1}{q^3-1}$$
$$=\lim_{q\to1}\frac{(q-1)}{(q-1)(q^2+q+1)}$$
$$=\lim_{q\to1}\frac1{q^2+q+1}\text{ as }q-1\ne0\iff q\ne1\text{ as } q\to1$$
$$=\cdots$$
Besides the nice answer you already got, what about l'Hospital?:
$$\lim_{p\to 1}\frac{p^{1/3}-1}{p-1}=\lim_{p\to 1}\;\frac13p^{-2/3}=\frac13$$
Hint
Let $$f(p)=p^{1/3}$$ Can you see why your limit is $f'(1)$?