$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}%
\newcommand{\yy}{\Longleftrightarrow}$
$\ds{\large%
I \equiv \int_{0}^{\pi/2}\cos\pars{x}\root{1 + \tan\pars{x}}\,\dd x:\ {\large ?}}$
\begin{align}
I&=\int_{0}^{\pi/2}\root{\cos^{2}\pars{x} + \sin\pars{x}\cos\pars{x}}\,\dd x
=
\int_{0}^{\pi/2}\root{{1 + \cos\pars{2x} \over 2} + {\sin\pars{2x} \over 2}}\,\dd x
\\[3mm]&=
{1 \over 4}\,\root{2}\int_{0}^{\pi}\root{1 + \cos\pars{x} + \sin\pars{x}}\,\dd x
=
{1 \over 4}\,\root{2}
\int_{0}^{\pi}\root{1 + \root{2}\sin\pars{x + {\pi \over 4}}}\,\dd x
\\[3mm]&=
{1 \over 4}\,\root{2}
\int_{\pi/4}^{5\pi/4}\root{1 + \root{2}\sin\pars{x}}\,\dd x
\end{align}
The $\it\underline{last\ integral}$ is evaluated here in terms of a Second Kind Elliptic function.
$$I=\int_{0}^{1}\sqrt{1+\frac{y}{\sqrt{1-y^{2}}}}\mathrm{d}y$$
and maybe it can help.
– Leonida Nov 16 '13 at 17:44