Just to give an alternative to multiplying by the conjugate expression, note that letting $x=u-2$ gives
$$\lim_{x\to\infty}(\sqrt{x^2+4x}-x)=2+\lim_{u\to\infty}(\sqrt{u^2-4}-u)$$
Now for $u\gt0$,
$$\left(u-{2\over u}\right)^2=u^2-4+{4\over u^2}\lt u^2-4\implies u-{2\over u}\lt\sqrt{u^2-4}\lt u$$
hence
$$-{2\over u}\lt\sqrt{u^2-4}-u\lt0$$
so by the Squeeze Theorem $\lim_{u\to\infty}(\sqrt{u^2-4}-u)=0$, and thus $\lim_{x\to\infty}(\sqrt{x^2+4x}-x)=2$.
Added later: Here is another alternative. Eschewing motivation, letting $x={1\over u+u^2}$ with $u\gt0$ gives
$$\sqrt{x^2+4x}-x=\sqrt{\left(1\over u+u^2\right)^2+{4\over u+u^2}}-{1\over u+u^2}={\sqrt{1+4u+4u^2}-1\over u+u^2}={\sqrt{(1+2u)^2}-1\over u+u^2}={1+2u-1\over u+u^2}={2\over1+u}$$
and thus
$$\lim_{x\to\infty}(\sqrt{x^2+4x}-x)=\lim_{u\to0^+}{2\over1+u}=2$$
(To motivate things, first let $x=1/h$ to obtain $(\sqrt{1+4h}-1)/h$ and then let $h=u+u^2$ to get a square inside the square root.)