2

I need to calculate $$\lim_{n\rightarrow \infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}}$$ My try:

When $n!$ is large we have $n!\approx(\frac{n}{e})^n\sqrt {2\pi n}$ (Stirling approximation) $$\lim_{n\rightarrow \infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}}=\lim_{n\rightarrow \infty}\frac{\left((\frac{n}{e})^n\sqrt {2\pi n}\right)^{\frac{1}{n}}}{n}$$ Simplifying we get, $$\frac{1}{e}\lim_{n\rightarrow \infty} \left(\sqrt{2\pi n}\right)^{\frac{1}{n}}$$

I am stuck here. I don't know how to proceed further.

GTX OC
  • 1,569
  • 2
  • 12
  • 19

3 Answers3

7

Another way :

Let $$A= \lim_{n \to \infty}\left(\frac{n!}{n^n}\right)^{\frac1n}$$

$$\implies \ln A= \lim_{n \to \infty}\frac1n\sum_{1\le r\le n}\ln \frac rn$$

Now use $$\lim_{n \to \infty} \frac1n\sum_{r=1}^n f\left(\frac rn\right)=\int_0^1f(x)dx$$

2

You are doing fine. You are almost done

$$ \frac{1}{e}\lim_{n\rightarrow \infty} (\sqrt{2\pi n})^{\frac{1}{n}} =\frac{1}{e}\lim_{n\to \infty} (\sqrt{2\pi})^{1/n} \lim_{n\to \infty} (\sqrt{n})^{1/n}=\frac{1}{e}1.1=\frac{1}{e}.$$

Note:

$$ (\sqrt{n})^{1/n} = n^{1/(2n)} = e^{\frac{1}{2n}\ln n}\longrightarrow_{n\to \infty} e^0=1 .$$

0

Instead of using the stirling approximation, try using the definition of $n!$ and distribute the $n^n$ over all terms in $n!$. Then try using the limit of $(1-x/n)^{1/n}$ as n tends to $\infty$.

Can you solve it from here?

shyamupa
  • 411