I need to calculate $$\lim_{n\rightarrow \infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}}$$ My try:
When $n!$ is large we have $n!\approx(\frac{n}{e})^n\sqrt {2\pi n}$ (Stirling approximation) $$\lim_{n\rightarrow \infty} \left(\frac{n!}{n^n}\right)^{\frac{1}{n}}=\lim_{n\rightarrow \infty}\frac{\left((\frac{n}{e})^n\sqrt {2\pi n}\right)^{\frac{1}{n}}}{n}$$ Simplifying we get, $$\frac{1}{e}\lim_{n\rightarrow \infty} \left(\sqrt{2\pi n}\right)^{\frac{1}{n}}$$
I am stuck here. I don't know how to proceed further.