As I said in the title,
I want distinguish algebras between ${\rm sl}(2,{\bf R})$ and $({\bf R}^3,\wedge)$ :
On ${\rm sl}(2,{\bf R})$ $$ e=\begin{bmatrix} 0 & 1 \\ 0 & 0\end{bmatrix},\ f= \begin{bmatrix} 0 & 0 \\ -1 & 0\end{bmatrix},\ h=\begin{bmatrix} 1 & 0 \\ 0 & -1\end{bmatrix}$$ so that $$ [e,f]=h,\ [f,h]=2f,\ [e,h]=-2e $$
(Note that this algebra has no proper ideal)
On ${\bf R}^3$ $$ e=(1,0,0),\ f=(0,1,0),\ h=(0,0,1) $$ so that $$ [e,f]=h,\ [f,h]=e,\ [h,e]=f$$
How can we prove that there exist no isomorphism ?