Setting $\frac1x=h,$
$$\lim_{x\to\infty^+}\sqrt{4x^2+x}-2x=\lim_{h\to0}\frac{\sqrt{4+h}-2}h\ \ \ \ (1)$$
Method $1:$
Now, $$\frac{\sqrt{4+h}-2}h=\frac{(4+h)-2^2}{h(\sqrt{4+h}+2)}=\frac1{\sqrt{4+h}+2}\text{ if }h\ne0$$
Here as $h\to0,h\ne0$
Can you take it from here?
Method $2:$
This has strong resemblance with your method
$\displaystyle \sqrt{4+h}=2\left(1+\frac h4\right)^{\frac12}=2\left(1+\frac12\cdot\frac h4+O(h^2)\right)$ (Using Maclaurin series )
$\displaystyle\implies \sqrt{4+h}-2=\frac h4+O(h^2) $
Now, I leave the rest for you to complete
Method $3:$
$$\lim_{h\to0}\frac{\sqrt{4+h}-2}h=\lim_{h\to0}\frac{\sqrt{4+h}-\sqrt4}h=\frac{d(\sqrt x)}{dx}_{(\text{ at } x=4)}=\frac1{2\sqrt x}_{(\text{ at } x=4)}$$
Method $4:$
Apply L'Hôpital's rule on $(1)$