Any space $X$ has at most $2^{2^{|X|}}$ ultrafilters, then, if $X$ is a Tychonoff space, $|\beta X|\leq 2^{2^{X}}$. For any regular space, one has $\operatorname{w}(X)\leq 2^{\operatorname{d}(X)}$. Thus, for any Tychonoff space $X$, $\operatorname{w}(\beta X)\leq 2^{|X|}$. Now let $\kappa \geq\omega$ be a cardinal and denote the discrete space of cardinality $\kappa$ as $D(\kappa)$. By the Hewitt-Marczewski-Pondiczery theorem, $I^{2^\kappa}$ has a dense subspace of cardinality $\kappa$; therefore, exists a continuous injection $f: D(\kappa)\to I^{2^{\kappa}}$ such that $f[D(\kappa)]$ is dense in $I^{2^{\kappa}}$. Now, extend $f$ to $\overline{f}:\beta D(\kappa)\to I^{2^\kappa}$. As $\beta D(\kappa)$ is compact, $\overline{f}$ is a continuous surjection from a compact space to a Hausdorff space and therefore $|\beta D(\kappa)|\geq |I^{2^{\kappa}}|$ and $\operatorname{w}(\beta D(\kappa))\geq \operatorname{w}(I^{2^\kappa}) = {2^{\kappa}}$.
As $|\mathbb{Z}_+| = \omega$ and $\operatorname{w}(\mathbb{Z}_+) = \omega$, one has $|\beta \mathbb{Z}_+| = 2^\mathfrak{c}$ and $\operatorname{w}(\beta\mathbb{Z}_+) = \mathfrak{c}$.