$$\lim_{n\to \infty } \,\cos (1) \cos \left(\frac{1}{2}\right) \cos \left(\frac{1}{4}\right)\cdots \cos \left(\frac{1}{2^n}\right)$$
How would you evaluate this limit? Is it just equivalent to $$\prod_{n=0}^\infty {\cos \left( \frac{1}{2^{n}} \right)}$$