Question: "How to show that OPn(1) is a line bundle using this definition? Thank you very much."
Answer: Let $S:=k[x_0,..,x_n]:=\oplus_{d \geq 0} k[x_0,..,x_n]_d:=\oplus_{d \geq 0}S_d$ and let $S(l)$ be the twist of $S$ by an integer $l$. By definition
$$S(l)_d:=S_{l+d}:=k[x_0,..,x_n]_{l+d}.$$
When you sheafify $S(l)$ you get an invertible sheaf $\mathcal{O}(l)$ on $\mathbb{P}^n$. It has the property that
$$I1.\text{ }\mathcal{O}(l)(D(x_i)) \cong k[\frac{x_0}{x_i},. ,\overline{\frac{x_i}{x_i}}.,\frac{x_n}{x_i}]x_i^l:=A_i x_i^l$$
is a free $\mathcal{O}(D(x_i))$ module of rank one on the element $x_i^l$. Here $D(x_i) \subseteq \mathbb{P}^n$ is the open subscheme where "$x_i \neq 0$". There is an isomorphism $D(x_i) \cong \mathbb{A}^n$. Hence the sheaf of $\mathcal{O}$-modules $\mathcal{O}(l)$ is locally free of rank $1$.
Let $z_i:=x_i^{-l}$ and consider the "symmetric algebra"
$$1. Sym^*_{A_i}(A_i z_i) \cong A_i[z_i].$$
It follows $A_i[z_i]$ is a polynomial ring in $z_i$ over $A_i$ hence $Spec(A_i[z_i]) \cong D(x_i) \times \mathbb{A}^1$. If we consider the "linebundle"
$$\pi: \mathbb{V}(\mathcal{O}(l)^*) \rightarrow \mathbb{P}^n$$
it follows $\pi^{-1}(D(x_i)) \cong D(x_i) \times \mathbb{A}^1$
and on the open set $D(x_ix_j)$ it follows there is an equality
$$ z_i =(\frac{1}{x_i})^l =(\frac{x_j}{x_i})^l(\frac{1}{x_j})^l =(\frac{x_j}{x_i})^l z_j $$
hence the transition function $f_{ij}:=(\frac{x_j}{x_i})^l$ (which is rational) is analytic on the open set $D(x_ix_j)$.
A proof of $I1$ is found in Hartshorne, Prop.II.5.11b.
Note: If $X$ is a scheme and $E$ is a locally free finite rank sheaf on $X$, we define the "geometric vector bundle" of $E$ to be the scheme
$$ \mathbb{V}(E^*):= Spec(Sym^*_{\mathcal{O}_X}(E^*).$$
There is a canonical morphism of schemes
$$\pi: \mathbb{V}(E^*) \rightarrow X$$
and $E$ is canonically the sheaf of sections of $\pi$.