This is supposed to be proven: $$\lim\limits_{n\to\infty}\sqrt [n]n=1$$
The sequence is monotone decreasing and has a lower bound of $1$. So $\epsilon=0$
With the Archimedean Property we get:
$$n_0\gt1+\dfrac2{\epsilon^2}$$
(What's that? $2$? epsilon squared? Where does this come from?)
The binomic theorem yields: $$n=\left(\sqrt[n]{n}\right)^n =\left(1+\left(\sqrt[n]n-1\right)\right)^n =\sum_{k=0}^n\binom{n}{k}\left(\sqrt[n]{n}-1\right)^k \geqslant\binom n2\left(\sqrt[n]{n}-1\right)^2 \\\,\\ =\dfrac{n(n-1)}2\left(\sqrt[n]{n}-1\right)^2$$
(how do I know that: $\left(\sqrt[n]{n}\right)^n=\left(1+\left(\sqrt[n]n-1\right)\right)^n$ ?, why is $k$ suddenly $2$?)
Then: $$\left(\sqrt[n]{n}-1\right)^2\leqslant\dfrac2{n-1}$$ and $$0\lt\sqrt[n]n-1\leqslant\sqrt{\dfrac2{n-1}}\leqslant\sqrt{\dfrac2{n_0-1}}\lt\sqrt{\epsilon^2}=\epsilon$$ (Again: What is all this and where does it come from?)
Ultimately: $$\left|\sqrt[n]n-1\right|=\sqrt[n]n-1\lt\epsilon$$ which is supposed to prove: $$\left(\sqrt[n]{n}\right)_{n\geqslant1}\longrightarrow1$$
Thank you in advance.