1

I have some problems with the following excersice: Find the order of the pole of: $$\frac{1}{(2\cos z -2 + z^2)^2}$$ at $z=0$. I thought it is maybe better to work here with $1/f$ and find the order of the zero at $z=0$. But I don't know how to continue. Thanks in advance!

fuglede
  • 6,716
Leslie
  • 179

1 Answers1

1

$$2\cos z-2+z^2=2\left(1-\frac{z^2}2+\frac{z^4}{24}-\ldots\right)-2+z^2=$$

$$=\frac{z^4}{12}-\frac{2z^6}{6!}+\ldots=z^4\left(\frac1{12}-\frac{2z^2}{6!}+\ldots\right)\implies$$

$$\left(2\cos x-2+z^2\right)^2=z^8\left(\frac1{144}+\frac{z^2}{3\cdot 6!}+\ldots\right)\implies$$

$$\frac1{(2\cos z-2+z^2)^2}=\;\;\ldots\ldots$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287