$$\lim_{x\to\frac\pi4}\frac{\sqrt{2}\cos x-1}{\cot x-1} =\sqrt2\lim_{x\to\frac\pi4}\frac{\cos x-\cos\frac\pi4}{\cot x-\cot\frac\pi4}$$
$$=\sqrt2\frac{\frac{d(\cos x)}{dx}_{(\text{ at }x=\frac\pi4)}}{\frac{d(\cot x)}{dx}_{(\text{ at }x=\frac\pi4)}}=\cdots$$
Alternatively,
$$F=\lim_{x\to\frac\pi4}\frac{\sqrt{2}\cos x-1}{\cot x-1} =\sqrt2\lim_{x\to\frac\pi4}\frac{\cos x-\cos\frac\pi4}{\cot x-\cot\frac\pi4}$$
$$=\sqrt2\lim_{x\to\frac\pi4}\frac{-2\sin\frac{x+\frac\pi4}2\sin\frac{x-\frac\pi4}2}{-\sin(x-\frac\pi4)}\cdot\sin x\sin\frac\pi4$$
$$=\sqrt2\lim_{x\to\frac\pi4}\frac{-2\sin\frac{x+\frac\pi4}2\sin\frac{x-\frac\pi4}2}{-2\sin\frac{x-\frac\pi4}2\cos\frac{x-\frac\pi4}2}\cdot\sin x\sin\frac\pi4$$
As $x\to\frac\pi4, x\ne\frac\pi4\implies \sin\frac{x-\frac\pi4}2\ne0 $
$$\implies F=\sqrt2\lim_{x\to\frac\pi4}\frac{\sin\frac{x+\frac\pi4}2}{\cos\frac{x-\frac\pi4}2}\cdot\sin x\sin\frac\pi4$$
$$=\sqrt2\frac{\sin\frac\pi4}{\cos0}\cdot\sin\frac\pi4\sin\frac\pi4=\cdots$$