I'm trying to solve this limit, for which I already know the solution thanks to Wolfram|Alpha to be $\sqrt[3]{abc}$:
$$\lim_{n\rightarrow\infty}\left(\frac{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}}{3}\right)^n:\forall a,b,c\in\mathbb{R}^+$$
As this limit is an indeterminate form of the type $1^\infty$, I've been trying to approach it by doing:
$$\lim_{n\rightarrow\infty}\left(\frac{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}}{3}\right)^n=\lim_{n\rightarrow\infty}\left(1+\frac{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}-3}{3}\right)^n=\lim_{n\rightarrow\infty}\left(1+\frac{1}{\frac{3}{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}-3}}\right)^n=\lim_{n\rightarrow\infty}\left(1+\frac{1}{\frac{3}{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}-3}}\right)^{\frac{3}{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}-3}\cdot\frac{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}-3}{3}\cdot n}=e^{\lim_{n\rightarrow\infty}\frac{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}-3}{3}\cdot n}$$
But now when I approach that top limit this is what I get:
$$\lim_{n\rightarrow\infty}\frac{a^\frac{1}{n}+b^\frac{1}{n}+c^\frac{1}{n}-3}{3}\cdot n=\lim_{n\rightarrow\infty}\frac{n\cdot a^{\frac{1}{n}}}{3}+\frac{n\cdot b^{\frac{1}{n}}}{3}+\frac{n\cdot c^{\frac{1}{n}}}{3}-n=\lim_{n\rightarrow\infty}\frac{n\cdot a^0}{3}+\frac{n\cdot b^0}{3}+\frac{n\cdot c^0}{3}-n=\lim_{n\rightarrow\infty}\frac{n}{3}+\frac{n}{3}+\frac{n}{3}-n=0$$
And hence the final limit should be $e^0=1$ which is clearly wrong but I honestly don't know what I did wrong, so what do you suggest me to solve this limit?