Let $A,B$ be rings. If $f:A\rightarrow B$ is a homomorphism from $A$ onto $B$ with kernel $K$, and $J$ is an ideal of $A$ such that $K\subseteq J$, then $f(J)$ is an ideal of $B$:
My solution: Let $a,b\in J$. Then $a+b\in J$, so $$f(a)+f(b)=f(a+b)\in f(J).$$ Also, $-a\in J$, so $$-f(a)=f(-a)\in f(J).$$ Finally, if $c\in A$, then $$f(a)f(c)=f(ac)\in f(J).$$
We don't need the fact that $K\subseteq J$, or am I mistaken somewhere?