The answer is No.
A similar question: Will $C[a,b]$ be complete in the norm $\|\cdot\|_{L^2}$?
(The answer will be the same No).
For your question, to construct a counterexample choose $a=0$, $b=\pi$, and take a Fourier series, say, wrt an orthogonal basis $\;\{\sin{nx}\}_{n-1}^{\infty}\;$ in
$ H_0^1(0,\pi)$
$$ f(x)\overset{def}{=}\sum\limits_{n=1}^{\infty}c_n\sin{nx},\quad x\in [0,\pi],\tag{$\ast$}$$
with any coefficients $c_n$ satisfying the conditions
$$\sum\limits_{n=1}^{\infty}n^2|c_n|^2<\infty,\quad \sum\limits_{n=1}^{\infty}n^4|c_n|^2=\infty.$$
Given such coefficients $c_n\,$, a function $f\in H_0^1(0,\pi)$ but $f\notin H^2(0,\pi)
\cap H_0^1(0,\pi)$ due to convergence of series $(\ast)$ in the norm $\|\cdot\|_{H^1}$
and its divergence in the norm $\|\cdot\|_{H^2}\,$. Now consider a sequence of partial sums
$$ f_m(x)\overset{def}{=}\sum\limits_{n=1}^{m}c_n\sin{nx},\quad x\in [0,\pi],\tag{$\ast\ast$}$$
which will be a Cauchy sequence in the norm $\|\cdot\|_{H^1}$ due to its convergence in
the norm $\|\cdot\|_{H^1}$ to the element $f\in H_0^1(0,\pi)$. If the space $H^2(0,\pi)\cap H_0^1(0,\pi)$ were complete in the norm $\|\cdot\|_{H^1}\,$, the Cauchy sequence $ f_m\in H^2(0,\pi)\cap H_0^1(0,\pi)$ would converge to some element $g\in H^2(0,\pi)\cap H_0^1(0,\pi)$ which should coincide with $f\notin H^2(0,\pi)\cap H_0^1(0,\pi)$. Hence,
the space $H^2(0,\pi)\cap H_0^1(0,\pi)$ cannot be complete in the norm $\|\cdot\|_{H^1}\,$.