$$C = \begin{bmatrix}2& -1 \\ 0 & 2\end{bmatrix}\quad $$
I break it down into two matrices $$A = \begin{bmatrix}2& 0 \\ 0 & 2\end{bmatrix}\quad \text{and}\quad B =\begin{bmatrix}0 & -1 \\ 0 & 0\end{bmatrix}.$$
For matrix $A$, $$\operatorname{exp}(A) = \begin{bmatrix}e^2& 0 \\ 0 & e^2\end{bmatrix}\quad.$$
For matrix $B$, we have that $B^k=0$, for all $k\ge 2$$$ \exp B=I +B+\frac{B^2}{2!}+\cdots+\frac{B^n}{n!}+\cdots= \cdots=I+B =\begin{bmatrix}1 & -1 \\ 0 & 1\end{bmatrix}.$$
So exp(C) = $$ \begin{bmatrix} \mathrm{e^2}+1 & -1\\ 0 & \mathrm{e^2}+1\end{bmatrix}\quad $$
Can someone check to see if this is right?
if so my next question is to find $$D = \begin{bmatrix}2& -1 \\ 1 & 2\end{bmatrix}\quad $$
I break it down into two matrices $$E = \begin{bmatrix}2& 0 \\ 0 & 2\end{bmatrix}\quad \text{and}\quad F =\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}$$
For matrix $E$, $\exp(E)$ is the same as $\exp(A)$, but for matrix $F$, I cannot apply the same method to solve matrix $B$. I am wondering how to find the $\exp(F)$?
Thank you