The residue of $$f(z)=\tan{z}$$ at any of its pole is,
$$f(z)=\tan{z}=\frac{(z-\frac{\pi}{2})(\tan{z})}{(z-\frac{\pi}{2})}$$
$$\begin{align} \left({\operatorname{Res} {f(z)=\tan{z}; z=\frac{\pi}{2}}}\right)&=\lim_{z\to \large{\frac{\pi}{2}}}\left((z-\frac{\pi}{2})(\tan{z})\right)\\ \\ &=0\\ \end{align}$$