\begin{eqnarray*} F_{i+1}&=&F_{i} + F_{i-1}\\ &=&\frac{\phi^i-\hat{\phi^i}}{\sqrt5}+\frac{\phi^{i-1}-\hat{\phi^{i-1}}}{\sqrt5}\\ &=&\frac{\left(\phi+\hat{\phi}\right)\left(\phi^i-\hat{\phi^i}\right)-\phi\hat{\phi}\left(\phi^{i-1}-\hat{\phi^{i-1}}\right)}{\sqrt5}\text{(Why does this work?)}\\ &=&\frac{\phi^{i+1}-\phi\hat{\phi^i}+\hat{\phi}\phi^i-\hat{\phi^{i+1}}-\phi^i\hat{\phi}+\phi\hat{\phi^i}}{\sqrt5}\\ &=&\frac{\phi^{i+1}-\hat{\phi^{i+1}}-\phi\hat{\phi^i}+\phi\hat{\phi^i}-\hat{\phi}\phi^i+\hat{\phi}\phi^i}{\sqrt5}\\ &=&\frac{\phi^{i+1}-\hat{\phi^{i+1}}}{\sqrt5}\\ \end{eqnarray*}
How to does the following become simplified?
$\frac{\phi^i-\hat{\phi^i}}{\sqrt5} =\left(\phi+\hat{\phi}\right)\left(\phi^i-\hat{\phi^i}\right)$
$\frac{\phi^{i-1}-\hat{\phi^{i-1}}}{\sqrt5} = \phi\hat{\phi}\left(\phi^{i-1}-\hat{\phi^{i-1}}\right)$