2

Hi everyone I have been trying to prove that that $ \int \limits_a^b f(x) dx$ = $ \int \limits_a^b f(a+b-x) dx$ . Heres my attempt:

LS: $ \int \limits_a^b f(x) dx$ = $ \int \limits f(b) - \int \limits f(a) $

RS: $ \int \limits_a^b f(a+b-x) dx$ = $ \int \limits f(a+b-b) - \int \limits f(a+b-a) $ = $ \int \limits f(a) - \int \limits f(b) $

as you can see I have really not been able to make the 2 sides equal each other. Any help on this i appreciated! Thank you

2 Answers2

2

Hint: Make the change of variables $ y=a+b-x $.

2

Take $y=a+b-x$. Then $dy/dx=-1$ and thus $∫_a^bf(a+b-x)dx= ∫_b^a-f(y)dy = ∫_a^bf(x)dx$

bodo
  • 1,144
Tubai
  • 135