Hint $\ $ Every proper fraction of form $f(x)/x^m$ can be written as $(c_0 + c_1 x +\:\cdots\: c_{m-1} x^{m-1})/x^{m}$. Such proper fractions form an $m$ dimensional vector space over $\mathbb R$ with basis $x^{-1},\:x^{-2},\:\cdots\:x^{-m}\:$. Therefore if $\,m > 1\,$ then the single fraction $1/x^m$ does not span the whole space. The same holds true if one applies a shift automorphism $x\mapsto x-r$. More concretely, e.g.
$$\dfrac {1}{x-r} = \dfrac{a}{(x-r)^m} \iff (x-r)^m = a(x-r) \iff m = 1 = a$$
Or, examine below how Heaviside breaks down when $\,a= b$
$$\dfrac1{(\color{#c00}{x\!-\!a})(\color{#0a0}{x\!-\!b})}=\dfrac A{x-a}+\dfrac B{x-b}\,\ \Rightarrow\ \, A = \dfrac{1}{a\color{#0a0}{-b}},\,\ B =\dfrac{1}{b\color{#c00}{-a}} =\, {-}A$$