Can someone please help me prove the following results from inverse trigonometry?
$$\tan^{-1}x + \tan^{-1}y = \pi + \tan^{-1}\frac{x+y}{1-xy}( x>0, y>0, xy>1)$$ and $$\tan^{-1}x + \tan^{-1}y = -\pi + \tan^{-1}\frac{x+y}{1-xy} ( x<0, y< 0, xy>1)$$ I know the prove for $\tan^{-1}x + \tan^{-1}y =\tan^{-1}\frac{x+y}{1-xy} ( xy<1)$ but cant prove the other two. Please do help.
Thanks in advance :)