Can you give me a really complete proof tha in a quadratic fiield $Q[\sqrt{(d)}]$ the algebraic integers are:
$\mathbb Z[\sqrt{(d)}]$ if $d\equiv2,3 \pmod4$
$\mathbb Z[(1+\sqrt{(d)})/2]$ if $d\equiv1 \pmod4$
Thank you very much :)
Can you give me a really complete proof tha in a quadratic fiield $Q[\sqrt{(d)}]$ the algebraic integers are:
$\mathbb Z[\sqrt{(d)}]$ if $d\equiv2,3 \pmod4$
$\mathbb Z[(1+\sqrt{(d)})/2]$ if $d\equiv1 \pmod4$
Thank you very much :)