Let $\{a_n\}$ be a bounded positive sequence ($a_n>0$).
$$\lim_{n\to\infty} a_na_{n+1}=1.$$
Show that $\limsup(a_n)\geq1$.
Thanks.
Let $\{a_n\}$ be a bounded positive sequence ($a_n>0$).
$$\lim_{n\to\infty} a_na_{n+1}=1.$$
Show that $\limsup(a_n)\geq1$.
Thanks.