$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\,{\rm I}\pars{a}
=\int_{0}^{1}{\ln\pars{1 - a^{2}x^{2}} \over \root{1 - x^{2}}}\,\dd x:
\ {\large ?}.\qquad\verts{a} \leq 1}$.
\begin{align}\color{#66f}{\large\,{\rm I}\pars{a}}
&=-a^{2}\int_{0}^{1}{x^{2} \over \root{1 - x^{2}}}
\int_{0}^{1}{\dd t \over 1 - a^{2}x^{2}t}\,\dd x
\\[5mm]&=-a^{2}\int_{0}^{1}
\int_{0}^{1}{x^{2} \over \root{1 - x^{2}}\pars{1 - a^{2}t\,x^{2}}}\,\dd x\,\dd t
\\[5mm]&=\int_{0}^{1}
\int_{0}^{1}
{\pars{1 - a^{2}t\,x^{2}} - 1 \over \root{1 - x^{2}}\pars{1 - a^{2}t\,x^{2}}}
\,\dd x\,{\dd t \over t}
\\[5mm]&=\int_{0}^{1}\ \overbrace{\int_{0}^{1}\bracks{
{1 \over \root{1 - x^{2}}} - {1 \over \root{1 - x^{2}}\pars{1 - a^{2}t\,x^{2}}}}
\,\dd x}
^{\ds{\dsc{x}\ \equiv\ \dsc{\cos\pars{\theta}}}}\
\,{\dd t \over t}
\\[5mm]&=\int_{0}^{1}\bracks{{\pi \over 2}
-\int_{0}^{\pi/2}{\dd\theta \over 1 - a^{2}t\,\cos^{2}\pars{\theta}}}
\,{\dd t \over t}
\\[5mm]&=\int_{0}^{1}\bracks{{\pi \over 2}
-\int_{0}^{\pi/2}
{\sec^{2}\pars{\theta}\,\dd\theta \over \sec^{2}\pars{\theta} - a^{2}t}}
\,{\dd t \over t}
\\[5mm]&=\int_{0}^{1}\bracks{{\pi \over 2}\ -\
\overbrace{\int_{0}^{\pi/2}
{\sec^{2}\pars{\theta}\,\dd\theta \over \tan^{2}\pars{\theta} + 1 - a^{2}t}}^{\ds{\dsc{\tan\pars{\theta}}\ \equiv\ \dsc{\root{1 - a^{2}t}\ \xi}}}}\
\,{\dd t \over t}
\\[5mm]&=\int_{0}^{1}\pars{{\pi \over 2}
-{1 \over \root{1 - a^{2}t}}\ \overbrace{\int_{0}^{\infty}{\,\dd\xi \over \xi^{2} + 1}}^{\dsc{\pi \over 2}}}
\,{\dd t \over t}
={\pi \over 2}\ \overbrace{
\int_{0}^{1}\pars{1 - {1 \over \root{1 - a^{2}t}}}\,{\dd t \over t}}
^{\ds{\dsc{t}\ \equiv \dsc{1 - y^{2} \over a^{2}}}}
\\[5mm]&={\pi \over 2}\int_{1}^{\root{1 - a^{2}}}\pars{1 - {1 \over y}}
\,{-2y\,\dd y/a^{2} \over \pars{1 - y^{2}}/a^{2}}
=\pi\int^{\root{1 - a^{2}}}_{1}{\dd y \over 1 + y}
\\[5mm]&=\color{#66f}{\large\pi\ln\pars{1 + \root{1 - a^{2}} \over 2}}
\end{align}