$$\lim_{n\to \infty}\frac1{2n}\log\left({2n \choose n}\right)$$
Now, $\log(n!) = \Theta (n\log(n))$ so I think we could write,
$$\lim_{n\to\infty}\frac{1}{2n}\left(\log\left(2n!\right) - \log\left(n!^2\right)\right) = \frac{1}{2n}\left(\log\left(2n!\right) - 2\log\left(n!\right)\right) $$
$$\lim_{n\to\infty}\frac{1}{2n}\left(2n\log\left(2n\right) - 2n\log\left(n\right)\right) $$
$$\log\left(2n\right) - \log\left(n\right) = \log(2)$$
Is this legitimate? I feel this might be wrong since, the $\Theta$ notation conceals a constant factor.