I am trying to show that $k[X]$ is integral over $k[X^2]$, where $k$ is a field.
Taking an element $b=b_nx^n+b_{n-1}x^{n-1}+...b_1x+b_0 \in K[X]$ we want to find $a_i \in K[X^2]$ such that $a^nb^n+a_{n-1}b^{n-1}+...a_1b+a_0=0$. I am stuck because if a square b for example then I am still going to end up with a polynomial with odd powers and I have no idea of how to get rid of them using coeffecients in $k[X^2]$.
Any tips would be great!