let $n\in \mathbb{N}, a \in \mathbb{R}$.
What can I then say about the gauß-function or floor-function:
$[an]$ ?
I have to show: $\left[\frac{[na]}{n}\right] = [a] := max\{ z \in \mathbb{Z}: z \le a\}$.
Well, if [na] = n[a] since n is a natural number, then: $\left[\frac{[na]}{n}\right] = \left[ \frac{n[a]}{n} \right] = [ [a] ] = [a]$ ?