Show $\frac{a_{1}+...+a_{n}}{b_{1}+...+b_{n}}$ is between the smallest and largest fraction $\frac{a_{i}}{b_{i}}$, where $b_{i}>0$.
Attempt
Assume the largest is $\frac{a_{n}}{b_{n}}\Rightarrow$
$\frac{a_{n}}{b_{n}}-\frac{a_{1}+...+a_{n}}{b_{1}+...+b_{n}}\Rightarrow $
$\frac{b_{1}+...+b_{n-1}}{{b_{1}+...+b_{n}}}[\frac{a_{n}}{b_{n}}-\frac{a_{1}}{b_{1}+...+b_{n-1}}-...-\frac{a_{n-1}}{b_{1}+...+b_{n-1}}]\Rightarrow $
if $a_{1}<0$, $w=\frac{a_{n}}{b_{n}}-\frac{a_{1}}{b_{1}+...+b_{n-1}}-...-\frac{a_{n-1}}{b_{1}+...+b_{n-1}}>\frac{a_{n}}{b_{n}}-\frac{a_{2}}{b_{1}+...+b_{n-1}}-...-\frac{a_{n-1}}{b_{1}+...+b_{n-1}}$
any hints or solutions?
