Let's have integral $$ I(x) = \frac{1}{2\pi} \int \limits_{-\pi}^{\pi}e^{x\cos(\theta )}d \theta, \quad x \to +\infty . $$ How to use Laplace approximation for this integral and find first two summands of asymptotic expansion?
Edit:
$$ I(x) = 2\frac{1}{2\pi}\int \limits_{0}^{\pi}e^{xcos(\theta )}d \theta = \left|z^2 = 1 - cos(\theta ), \quad d\theta = \frac{2dz}{\sqrt{2 - z^2}}\right| = $$ $$ =4e^{x}\frac{1}{2\pi}\int \limits_{0}^{2} e^{-xz^2}\frac{dz}{\sqrt{2 - z^2}} = \left|\frac{1}{\sqrt{2 - z^2}} = \frac{1}{\sqrt{2}} + \frac{z^2}{4 \sqrt{2}} + O(z^4)\right| = $$ $$ =\sqrt{2}\frac{1}{2\pi}e^{x}\int \limits_{-\infty}^{\infty}e^{-xz^2}\left( 1 + \frac{z^2}{4} + O(z^{4})\right)dz = \sqrt{\frac{1}{2 \pi x}}e^{x}\left(1 + \frac{1}{8 x} + O\left(\frac{1}{x^2}\right)\right) . $$