We all know that $$ \sum_{k=1}^n \frac{1}{k} \sim \log(n).$$
What is the analagous result for $\sum_{k=1}^n k^{-1/2}$ ?
Many thanks for your help.
We all know that $$ \sum_{k=1}^n \frac{1}{k} \sim \log(n).$$
What is the analagous result for $\sum_{k=1}^n k^{-1/2}$ ?
Many thanks for your help.
By looking at upper and lower Riemann sums on this decreasing function, you can bracket it by $$\int_1^{n} x^{-\frac 12}\ dx \lt \sum_{k=1}^nk^{-\frac 12} \lt \int_0^{n-1} x^{-\frac 12}\ dx\\2\sqrt n-2\lt \sum_{k=1}^nk^{-\frac 12} \lt2\sqrt {n-1}$$
$$ \frac \beta{k^\alpha} - \frac \beta{(k+1)^\alpha} \sim \frac {\alpha\beta}{k^{\alpha + 1}} = \frac 1{\sqrt{k}} $$if $\alpha = -1/2$ and $\beta = -2$
now as $\sum \frac 1{\sqrt{k}} = \infty$:
$$ \sum_{k=1}^N \frac 1{\sqrt{k}}\sim \sum_{k=1}^N \frac \beta{k^\alpha} - \frac \beta{(k+1)^\alpha} \sim -\frac \beta{N^\alpha} = 2\sqrt{N} $$