Hint $\ $ If $\,f\in\Bbb Z[x]\,$ then the Factor Theorem yields a Taylor approximant
$\quad\qquad\qquad\quad\, f(x) = f(a) +\: f\:'(a)\ (x-a) \:+\: (x-a)^2\: g(x)\quad {\rm for\ some}\ \ g(x) \in \mathbb Z[x]$
$\displaystyle\qquad\qquad\Rightarrow\ \ \frac{f(x)-f(a)}{x-a} \: \equiv\ f\:'(a)\quad ({\rm mod}\ \:x-a)$
$\quad \Rightarrow \left(x-a,\dfrac{f(x)-f(x)}{x-a}\right)\,=\, (x-a,\, f'(a))\ $ by the Euclidean algorithm
$\ \ \underset{\large \begin{array}{}\ \ x\,=\,b\\ a\ \to\ -a\end{array}}{\overset{\large f(x)\,=\,x^p}\Rightarrow} \left(b+a,\dfrac{b^p+a^p}{b+a\ }\right)\,=\!\! \underbrace{(b+a,\, pb^{p-1})}_{\large (b+a,b)\,=\,(a,b)\,=\,1}\!\! = (b+a,p) = 1\,\ {\rm or}\,\ p$