3

$$\lim_{n\to \infty} \int_0^\pi \sin^n x dx$$

I have been trying to compute this integral for months and have gotten nowhere. I seem to be going in circles. Any help at all would be seriously appreciated.

gt6989b
  • 54,422
Ashley
  • 91

5 Answers5

6

This integral will be zero- the result follows from the dominated convergence theorem:

$|(\sin(x))^n|<1$ and $1$ is integrable on the finite measure space $[0,\pi]$ and $\sin(x))^n \rightarrow 0$ a.e.

So, by dominated convergence theorem, the integral is $0$.

voldemort
  • 13,182
4

As derived here, we have

$$\int_0^{\pi} d\theta \, \sin^n{\theta} = \begin{cases}\displaystyle \frac{\pi}{2^{2 k}} \binom{2 k}{k} & n=2 k \\ \displaystyle \frac{2^{2 k}}{\displaystyle k \binom{2 k}{k}} & n = 2 k-1 \end{cases} $$

Now use the Stirling approximation, i.e.,

$$\binom{2 k}{k} \sim \frac{(2 k)^{2 k} e^{-2 k} \sqrt{2 \pi 2 k}}{k^{2 k} e^{-2 k} (2 \pi k)} = \frac{2^{2 k}}{\sqrt{\pi k}}$$

Thus,

$$\int_0^{\pi} d\theta \, \sin^n{\theta} \sim \begin{cases}\displaystyle \sqrt{\frac{\pi}{k}} & n=2 k \\ \displaystyle\sqrt{\frac{\pi}{k}} & n = 2 k-1 \end{cases} $$

i.e.,

$$\int_0^{\pi} d\theta \, \sin^n{\theta} \sim \sqrt{\frac{2 \pi}{n}} \quad (n \to \infty)$$

which vanishes in the limit of $n \to \infty$.

ADDENDUM

This agrees with analysis using Laplace's method, i.e., express the integral as

$$\int_0^{\pi} d\theta \, e^{n \log{\sin{\theta}}}$$

Expand about the critical point, and we have, to third order,

$$\int_0^{\pi} d\theta \, e^{-(n/2) (\theta-\pi/2)^2}$$

We may then extend the integration interval to the real line with exponentially small error; the above result follows.

Ron Gordon
  • 138,521
3

You don't need to compute the integral: $$\int_0^\pi\sin^n x=2\int_0^{\pi/2}\sin^n x=2\int_0^{\pi/2-\varepsilon}\sin^n x+2\int_{\pi/2-\varepsilon}^{\pi/2}\sin^n x\le\\2\left(\frac\pi2-\varepsilon\right)\sin^n\left(\frac\pi2-\varepsilon\right)+2\varepsilon\overset{n\to\infty}{\longrightarrow}2\varepsilon$$ for arbitrarily small $\varepsilon>0$.

user2345215
  • 16,422
1

Just think logically. $\sin x \le 1 $ from $0$ to $\pi$, and when you take something below $1$ and above $0 $to an extremely high value, it approaches $0$ because each time you multiply it by itself it gets smaller. There is only $1$ point where $\sin x=1$, at $x = \pi / 2$. These points have no width, so as n goes to infinity $\int^\pi_0 (\sin x)^n$ goes to $0$.

MT_
  • 19,603
  • 9
  • 40
  • 81
Asimov
  • 3,024
  • You seem to be moving the limit inside the integral without any argument as to why this can be done. – RghtHndSd Apr 09 '14 at 01:41
  • the limit on n applies to all points on the integral. This holds true for all of the points except $0$ and $\pi$, so this can be applied to all of those points – Asimov Apr 09 '14 at 01:48
  • If you have the function $f_n$ given by $2^n$ on the interval $[0, 1/2^n]$ and zero otherwise, then the same reasoning is true but of course the limit of the integral is one. As in the other answer, one must use the series of functions has a uniform bound. – RghtHndSd Apr 09 '14 at 01:53
0

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\lim_{n \to \infty} \int_{0}^{\pi}\sin^{n}\pars{x}\,\dd x} = \lim_{n \to \infty} \int_{-\pi/2}^{\pi/2}\cos^{n}\pars{ x}\,\dd x = 2\lim_{n \to \infty}\int_{0}^{\pi/2}\cos^{n}\pars{ x}\,\dd x \end{align} The main contribution to the integration comes from values of $\ds{x \gtrsim 0}$. Then, \begin{align} &\bbox[5px,#ffd]{\lim_{n \to \infty} \int_{0}^{\pi}\sin^{n}\pars{x}\,\dd x} = 2\lim_{n \to \infty} \int_{0}^{\pi/2}\expo{n\ln\pars{\cos\pars{x}}}\,\,\,\dd x \\[5mm] = &\ 2\lim_{n \to \infty} \int_{0}^{\infty}\expo{-nx^{2}\,/2}\,\,\dd x\qquad \pars{~Laplace\,'s\ Method~} \\[5mm] = &\ 2\lim_{n \to \infty}\pars{\root{2 \over n}{\root{\pi} \over 2}} = \bbx{0} \\ & \end{align}

Felix Marin
  • 89,464