Another reason there is no discussion of an inverse of Euler's totient function is that it is not injective, therefore possesses no inverse. Here are all numbers $n \geq 1$ with $\phi(n) \leq 52,$ with $\phi(n)$ printed first on each line. Such a list is finite, as
$$ \sqrt \frac{n}{2} \leq \phi(n) \leq n $$
phi(n) n
1 1
1 2
2 3
2 4
2 6
4 10
4 12
4 5
4 8
6 14
6 18
6 7
6 9
8 15
8 16
8 20
8 24
8 30
10 11
10 22
12 13
12 21
12 26
12 28
12 36
12 42
16 17
16 32
16 34
16 40
16 48
16 60
18 19
18 27
18 38
18 54
20 25
20 33
20 44
20 50
20 66
22 23
22 46
24 35
24 39
24 45
24 52
24 56
24 70
24 72
24 78
24 84
24 90
28 29
28 58
30 31
30 62
32 102
32 120
32 51
32 64
32 68
32 80
32 96
36 108
36 114
36 126
36 37
36 57
36 63
36 74
36 76
40 100
40 110
40 132
40 150
40 41
40 55
40 75
40 82
40 88
42 43
42 49
42 86
42 98
44 138
44 69
44 92
46 47
46 94
48 104
48 105
48 112
48 130
48 140
48 144
48 156
48 168
48 180
48 210
48 65
52 106
52 53
phi(n) n