$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi}\ln\pars{\sin\pars{x} + \root{1 + \sin^{2}\pars{x}}}\,{\rm d}x
:\ {\large ?}}$
\begin{align}&\color{#c00000}{%
\int_{0}^{\pi}\ln\pars{\sin\pars{x} + \root{1 + \sin^{2}\pars{x}}}\,{\rm d}x}
=2\int_{0}^{\pi/2}\ln\pars{\cos\pars{x} + \root{1 + \cos^{2}\pars{x}}}\,{\rm d}x
\\[3mm]&=2\int_{0}^{\pi/2}{\rm arcsinh}\pars{\cos\pars{x}}\,{\rm d}x
=2\int_{0}^{\pi/2}{\rm arcsinh}\pars{\sin\pars{x}}\,{\rm d}x
\end{align}
However, $\ds{G = \int_{0}^{\pi/2}{\rm arcsinh}\pars{\sin\pars{x}}\,{\rm d}x}$ is a well known Catalan Constant $\ds{G}$ Integral Representation. See ${\bf\mbox{Entry}\ 17}$ in
Victor Adamchik Page.
$$
\color{#66f}{\large%
\int_{0}^{\pi}\ln\pars{\sin\pars{x} + \root{1 + \sin^{2}\pars{x}}}\,{\rm d}x
= 2G} \approx 1.8319
$$