Give an equational proof $$ \vdash (\exists x)(A \lor B) \equiv (\exists x)A \lor (\exists x)B $$
What I tried
$(\exists x)(A \lor B)$
Applying Definition of $\exists$
$\lnot (\forall x)\lnot (A \lor B)$
Applying De morgan
$\lnot (\forall x) (\lnot A \land \lnot B)$
Applying Distributivity of $\forall$ over $\land$
$\lnot (\forall x) \lnot A \land \lnot(\forall x) \lnot B$
Applying Definition of $\exists$
$(\exists x)A \land (\exists x)B$
What can I do next ?
See George Tourlakis, Mathematical Logic (2008) or this post for a list of axioms and theorems.