1

Prove $$x-\lfloor x\rfloor-\frac{1}{2}=-\sum_{n\mathop =1}^{\infty}\frac{\sin(2\pi nx)}{\pi n}$$ where $x$ is any non-integer real number.

1 Answers1

1

$$\sin t=\Im(e^{it})\quad=>\qquad\frac{\sin(2\pi nx)}{2\pi n}=\Im\bigg(\frac{e^{2\pi inx}}{2\pi n}\bigg)=\Im\int e^{2\pi inx}dx\qquad=>$$

$$\sum_1^\infty\frac{\sin(2\pi nx)}{2\pi n}=\Im\int\sum_1^\infty e^{2\pi inx}dx=\Im\int\frac{e^{2\pi ix}}{1-e^{2\pi ix}}dx=-\Im\bigg[\frac{\ln(1-e^{2\pi ix})}{2\pi}\bigg]$$

Of course, the whole catch is to pay attention to the branches of the complex logarithm.

Lucian
  • 48,334
  • 2
  • 83
  • 154