How could I go about proving the following limit:
$$ \lim_{n\to\infty} \left( \frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \frac{n}{n^2+n^2} \right) = \frac{\pi}{4} $$
How could I go about proving the following limit:
$$ \lim_{n\to\infty} \left( \frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \frac{n}{n^2+n^2} \right) = \frac{\pi}{4} $$