1

How to solve this problem using mathematical induction? $$\arctan1 + \arctan\frac13 +\cdots+\arctan\frac1{n^2+n+1}=\arctan (n+1)$$

Blue
  • 75,673
Tamaara
  • 19

1 Answers1

3

Hint: $$\tan(a+b)=\frac{\tan a+\tan b}{1-\tan a\tan b}$$

In your case, for the base case $n=1$, $$\tan\left(\arctan 1+\arctan\frac{1}{3}\right)=\frac{\tan(\arctan 1)+\tan(\arctan\frac{1}{3})}{1-\tan(\arctan1)\tan(\arctan\frac{1}{3})}=\frac{1+\frac{1}{3}}{1-\frac{1}{3}}=2$$So $\arctan 1+\arctan\frac{1}{3}=\arctan 2$.